If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+20x-96^2=0
We add all the numbers together, and all the variables
4x^2+20x-9216=0
a = 4; b = 20; c = -9216;
Δ = b2-4ac
Δ = 202-4·4·(-9216)
Δ = 147856
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{147856}=\sqrt{16*9241}=\sqrt{16}*\sqrt{9241}=4\sqrt{9241}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-4\sqrt{9241}}{2*4}=\frac{-20-4\sqrt{9241}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+4\sqrt{9241}}{2*4}=\frac{-20+4\sqrt{9241}}{8} $
| |7u|=77 | | 50=100.4814x | | 3x=15^2x-5 | | 0=x^2-0.5x-7.5 | | 50=115.8314x | | w/4-2=18 | | w4-2=18 | | 17=10b+2 | | 0=x^2+10x-144 | | 50=129.6349x | | 3004=6b+4 | | 3004=6b | | 3j-3=0 | | -2b+6=-12 | | x^2=18x+59 | | 9=30/x | | 47=19-9x | | 9n+8=26 | | 5x2−5=0 | | 5t-10=0 | | -5+9x=-2 | | x+5=92 | | 4m-10=-6 | | s-26=45 | | 1/6x+5=19 | | 9-5x+2=4+-5x | | 15^2+x=26^2 | | 0.8a+(-5)=0 | | 1.5s-(-4)=8 | | 2.17+x=55 | | -71+s=64000 | | n+.3=2.9 |